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THIS MONTH

POINTS OF SIGNIFICANCE

P values and the search 
for significance
Little P value 
What are you trying to say  
Of significance?  
 —Steve Ziliak

The significance of experimental results is often assessed using 
P values and estimates of effect size. However, the interpreta-
tion of these assessment tools can be invalidated by selection 
bias when testing multiple hypotheses, fitting multiple models 
or even informally selecting results that seem interesting after 
observing the data. Our goal this month will be to identify some 
circumstances that can give rise to such questionable practices—
broadly termed ‘P value hacking’ and ‘data dredging’. In addition, 
statistically significant results may not translate into biologically 
meaningful conclusions—with large sample sizes or small vari-
ability, even tiny effects can be statistically significant.

We have previously seen how to correctly interpret P values 
in the context of high-throughput ‘omics’ experiments in which 
the multiple testing is explicit1. We discussed the number of false 
discoveries that can be expected when a fixed P value is used to 
reject the null hypothesis. Here, to illustrate how P values can 
lead us astray, we reverse that process and instead ask: what is the 
smallest P value we can expect if the null hypothesis is true but 
we have done many tests, either explicitly or implicitly?

Consider a study in which 10 physiological variables are mea-
sured in 100 individuals to determine whether any of the vari-
ables are predictive of systolic blood pressure (SBP). Suppose that 
none of the variables are actually predictive in the population and 
that they are all independent. If we use simple linear regression2 
and focus on one of the variables as a predictor, a test of associa-
tion will yield P < 0.05 in 5% of samples (Fig. 1a). However, if we 
test each of our predictors, there is now a 40% chance that we’ll 
find P < 0.05 for at least one. How does this arise?

When we search for the most significant result, we do not have a 
fixed null hypothesis. It’s entirely possible that a different predictor 
would be identified as most significant in the next repetition of the 

experiment. In reporting the most significant P value, we are actu-
ally considering the distribution of the minimum of 10 random uni-
form distributions (Fig. 1b). This distribution is readily computed 
and has density k(1 – x)k – 1 for k independent tests. Using k = 10, the 
probability of observing P < 0.05 is 1 – (1 – 0.05)10 = 0.40 (Fig. 1b).

Reporting a statistically significant result as if this were the only 
test performed is an example of selection bias and leads to inflated 
claims of statistical significance. It’s important to realize that it does 
not matter whether or not the tests were actually performed—any 
choice of results based on the outcome, rather than on prespecified 
hypotheses, will lead to selection bias.

We have previously seen that multiplicity adjustment is one way 
to fix selection bias for P values1. Using the adjusted P values from 
a family-wise error rate or false discovery rate guards against over-
interpreting the P values when multiple testing has been done. 
However, it is less clear how to do this when an interesting effect 
has been detected after exploration of the data. For example, if we 
plotted SBP against each of our 10 predictors and felt that 1 predictor 
might have a quadratic relationship with SBP, should we adjust for 
10 comparisons (the 10 plots), 20 comparisons (linear or quadratic 
effects) or more (to account for nonlinear relationships)? The more 
models we consider, the greater the danger of overfitting the data 
and producing false positives.

A common suggestion for supplementing P values is to report 
the confidence interval for the effect. Does this assist with selec-
tion bias? Figure 2 shows the confidence intervals corresponding 
to the testing scenarios in Figure 1. When we perform 100 single 
hypothesis tests when the null is true, only 5% of the confidence 
intervals do not cover 0 (Fig. 2a). This picture looks very different 
if we consider only the most significant confidence interval from 
among 10 tests (Fig. 2b). On average, 40% of the confidence inter-
vals do not cover 0, which should not be surprising, as we’ve already 
shown that this is the fraction of the underlying P values that are 
less than 0.05 (Fig. 1b). Selection bias is not addressed or corrected 
merely by reporting both the P value and the confidence interval.

Another common analysis in which P values can easily be mis-
interpreted is the selection of a prediction model for multiple 
regression or classification. To show how this can occur, we per-
formed 1,000 simulations of our 10 physiological variables that 
were, as before, random and independent of each other and of 
SBP. We then applied forward selection to identify variables that 

Figure 1 | P values are random variables. In assessing statistical 
significance, we rely on their distribution when the null hypothesis, 
H0,is true. (a) Simulated P values from 1,000 statistical tests when H0 is 
true. The distribution is uniform and, on average, 5% of P < 0.05 (blue). 
(b) The distribution of the minimum P value across 1,000 simulations of 10 
tests when H0 is true. Now, on average, 40% of P < 0.05 (blue). Note the 
difference in y-axis scale compared to a. 

Figure 2 | Merely reporting 95% confidence intervals does not address 
selection bias. (a) 95% confidence intervals for 100 one-sample t-tests 
with samples of size n = 100, mean zero and s.d. = 1. Intervals are vertically 
sorted in increasing order of statistical significance. (b) 100 instances of the 
95% confidence interval corresponding to the most significant result from a 
set of 10 one-sample t-tests of the kind performed in a.
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statistically predicted SBP. In this selection process, we start with 
no variables in the model and iteratively add the variables that 
provide the most statistically significant improvement, repeating 
this until no further variables add to the explanatory power of 
the model. 

First, if we fit all 10 variables simultaneously and test at P ≤ 0.05, 
we reject the null hypothesis of no association between the predic-
tors and SBP only 5% of the time, as expected. However, using for-
ward stepwise variable selection, we correctly identify 0 variables as 
predictive in only 172 out of 1,000 simulations (Fig. 3a). We reject 
the null hypothesis 82.8% of the time and observe compellingly low 
P values (Fig. 3b). Our results have a very high false discovery rate, 
even though there are 100 observations with only 10 predictors. 
Stepwise regression, which has even greater flexibility in choice of 
predictors, can boost the false discovery rate even more. 

Although there is some recent work on inference after model 
selection, these are approximations that work only under limited 
conditions. The only universally acceptable method for validating 
a model and assessing its goodness of fit after model selection is use 
of an independent test sample3.

So far, we have discussed only the simplest case, in which our 
set of putative predictors are independent. Dependence among the 
predictors complicates matters—if one of the predictors is statisti-
cally significant by chance, then other correlated predictors are also 
more likely to be statistically significant, which may appear to add 
weight to the significant results. For example, we might have several 
correlated metabolites as predictors. When one is selected, others 
may also be pulled into the model as predictors, creating a readily 
interpretable (yet wrong) biological explanation. 

Another issue in the search for significance is overinterpretation 
of the relationship between statistical and biological significance. 
For example, suppose we have found a drug that can lower SBP on 

average by 10% of the population standard deviation, or about 2 
mmHg. This is unlikely to be a medically relevant reduction. The 
power to detect such a small change is only 9% if the sample size is 
10, but rises to 93.5% if the sample size is 1,000 (using a one-sided 
paired t-test). If the sample size is large enough, a study may cor-
rectly identify that there is a non-zero effect even if it is very small. 
However, to understand the biological relevance of the effect, we 
need an estimate of the effect size, such as a confidence interval. In 
the above example, computing a 95% confidence interval of 2 mm 
Hg ± 1 mm Hg would allow us to identify the lack of biological rel-
evance. In contrast, merely stating that a significant reduction was 
found would obscure the fact that the result, although statistically 
significant, is not likely to be biologically relevant because the SBP 
reduction reported in the confidence interval is so small.

Recently, the American Statistical Association issued a state-
ment on the appropriate use of P values and other inferential sta-
tistical methods, calling for caution in searching for significance4. 
The report warned against confounding relevance with statistical 
significance and effect sizes, inadequately exploring the data, not 
considering relevant covariates and overfitting—all practices that 
can lead to misuse and squandering of a data resource. 

During statistical analysis, we must carefully distinguish between 
using data to confirm inferences and using data to generate hypoth-
eses. In confirmatory use, P values and confidence intervals can be 
computed and interpreted as taught in basic statistics courses. In 
exploratory use, P values can be interpreted as measures of statisti-
cal significance only if appropriately adjusted for multiple testing or 
selection; confidence intervals also need to be adjusted for multiple 
testing. There are no simple and well-accepted means of doing this 
adjustment except in the case of explicit multiple testing. Our next 
column will discuss some suggested rules of thumb for interpret-
ing and adjusting P values that combine frequentist methods with 
Bayesian paradigms.
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Figure 3 | Variable selection during model building greatly inflates 
statistical significance. (a) Number of times that 0 (the correct number) 
to 6 of predictors were selected as explanatory from 1,000 simulations. 
(b) Distribution of R2 (top) and P values of the F-test (bottom) for the 828 
cases from a in which the incorrect number (k > 0) of predictors was selected.


	_GoBack



