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Abstract
Simpson's Paradox occurs when an observed associa-
tion is spurious – reversed after taking into account a
confounding factor.  At best, Simpson's Paradox is used
to argue that association is not causation.  At worst,
Simpson's Paradox is used to argue that induction is
impossible in observational studies (that all arguments
from association to causation are equally suspect) since
any association could possibly be reversed by some yet
unknown confounding factor. This paper reviews Corn-
field's conditions – the necessary conditions for Simp-
son's Paradox – and argues that a simple-difference
form of these conditions can be used to establish a
minimum effect size for any potential confounder.
Cornfield's minimum effect size is asserted to be a key
element in statistical literacy.  In order to teach this
important concept, a graphical technique was developed
to illustrate percentage-point difference comparisons.
Some preliminary results of teaching these ideas in an
introductory statistics course are presented.

Keywords:  Statistical Literacy, Teaching; Epistemo l-
ogy; Philosophy of science; Observational studies.

1. STATISTICAL LITERACY
Statistical literacy studies the use of statistics and sta-
tistical associations as evidence in arguments (Schield,
1998).  Many arguments involving statistical associa-
tions are based on observational studies and are directed
at supporting claims on causation.  Interpreting such
associations is a major problem due to the possibility of
confounding.  Simpson's Paradox is a striking example
of this problem.

2. WHAT IS SIMPSON'S PARADOX?
Simpson's Paradox is the reversal of an association
between two variables after a third variable (a con-
founding factor) is taken into account.  For an overview
of association reversals, see Samuels (1993).  A con-
founding factor is a factor — a lurking variable —
which is found or mixed with another.

Simpson's paradox has been observed in several real-
life situations.  One well-known example occurred in
the Graduate Division of the University of California at
Berkeley.  Women were rejected more often than men
at the overall college level, but men were rejected more
often than women at the individual departmental level.
The confounding factor was the choice of department.
Women were more likely to choose departments with
higher rejection rates than were men (Freedman, Pisani,
Purves, and Adhikari 1991, p. 16).

In another example, it was found that whites were more
likely to be sentenced to death for murder than blacks.
But after taking into account the confounding factor of
the race of the victim, it was found that blacks were
more likely to be sentenced to death than whites.  A
death sentence was more likely if the victim was white.
Since blacks were more likely to kill blacks, they were
less likely to be sentenced to death.  But whether the
victim was white or black, a death sentence was more
likely for blacks than for whites.  (Agresti 1984)

3. IS SIMPSON'S PARADOX IMPORTANT?
Simpson's Paradox is vitally important for several rea-
sons. (1) It clearly demonstrates that correlation is not
always causation.  If the direction of an association can
be reversed, any assertion about direct causation is
clearly disputable.  (2) It demonstrates that associations
are sometimes conditional.  Students often think of nu-
merical associations as immutable—as unconditional.
By studying Simpson's Paradox students overcome this
mistaken perception.  (3) It introduces the minimum
effect size necessary for a confounder to explain a spu-
rious association.  The measurement of the minimum
effect size is the point of this paper and is developed in
a later section.

4. UNDERSTANDING SIMPSON'S PARADOX
It is not easy to understand the reasons for—much less
the cause of—a reversal of an association, i.e., Simp-
son's Paradox.  Consider three types of explanations:

Mathematical explanation: “Consider 8 variables: A, B,
C, D, a, b, c and d.  If it is true that A/B > a/b and C/D
> c/d, is it also true that (A+C)/(B+D) > (a+c)/(b+d )?”
The reply: “Not in general.  For example, 1/1 > 3/4 and
1/4 > 0/1.  Now (1+1)/(4+1) = 2/5 and (3+0)/(4+1) =
3/5.  Now is 2/5 > 3/5?  No!” (sci.stat.edu, 12/96).  In
this explanation, the reversal is just a consequence of
the particular numbers involved.

Group inhomogeneity explanation.  Suppose A, B, ... d
are as above.  Let A/B = P1 and C/D = P3.  Let a/b = P2
and c/d = P4.  Let the size of the groups being com-
pared be illustrated by the number of “x” symbols.

xx A/B=P1    >   P2=a/b xxxxxxxxxx
xxxxxx C/D=P3    >   P4=c/d  xx

The ⊕ symbol indicates the merging of the groups:
P1 ⊕ P3  =  (A+C)/(B+D)

  P2 ⊕  P4  =  (a+c)/(b+d)

xxxxxxxx P1 ⊕  P3   <   P2 ⊕ P4   xxxxxxxxxxxx
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We see above that P1 > P2 and P3 > P4, but P1 ⊕  P3 <
P2 ⊕ P4: the Simpson’s Paradox reversal.

The differing size of the groups explains the reversal in
the association.  This explanation is sometimes pre-
sented using baseball batting averages.  Suppose in the
first half of the season, Slugger (370 = P1) had a higher
batting average than Bantam (330 = P2).  In the second
half Slugger (200 = P3) had a higher batting average
than Bantam (190 = P4).  Yet for the entire season, this
association can reverse.  Bantam can have a higher bat-
ting average than Slugger if Bantam bats much more
than Slugger in the first half and much less than Slugger
in the second half.

Confounding factor explanation: What we fail to take
into account strongly influences our conclusions (Kelly
1994).  Consider an example:

A father and his young children were riding on the
New York subway.  The children were out of control.
The father was slumped over with his head in his
hands.  When the father did nothing to control the
children some of the passengers became irritated.
One of them asked the father to control the children
(implying the father was derelict in his responsibili-
ties).  The father lifted his head and explained that he
and the children had left the hospital where his wife,
their mother, had just died.  The passengers immedi-
ately reversed their evaluation once they took account
of the influence of the death on the family.

Students understand this principle: a more important
factor can easily change one’s standard for evaluation.

5. ANTICIPATING SIMPSON'S PARADOX

But even if Simpson’s Paradox were readily under-
stood, it is not easily anticipated.  There is no test for
determining whether an association is spurious (Pearl,
1999).  Textbooks seldom indicate a way to estimate
the likelihood of a Simpson's Paradox reversal.

After studying Simpson’s Paradox, one student con-
cluded one should never trust any association based on
an observational study.  And if there is no way to an-
ticipate when a Simpson's Paradox reversal could oc-
cur, this student is absolutely right.  One solution is to
ignore observational studies and deal only with ran-
domized experiments where the problem of confound-
ing is minimized.  However, experiments are not al-
ways possible, so students need to learn how to deal
with associations based on observational studies.

6. FROM CORRELATION TO CAUSATION
A serious concern about the possibility of Simpson’s
Paradox arose in the late 1950s when several research
projects found an association between smoking and
lung cancer.  But these associations were observational

so it was possible that an unknown confounding factor
might significantly change the associations.

Fisher (1958) noted that genetic factors might dispose
one on whether to smoke or on what (cigarette, pipe, or
cigar) to smoke.  Although Fisher was a smoker, his
article demonstrated his allegiance to the power of data.
He did not just allude to the possibility of some con-
founding factor; he presented actual data on smoking
choices among fraternal and identical twins.  He calcu-
lated the percentage of twins in which there were dis-
tinct differences in smoking (smoker versus non-
smoker or cigarette smoker versus pipe smoker).  His
data showed that there were distinct differences in
smoking choice among 51% of the fraternal twins as
opposed to 24% of the identical twins.  He concluded,
“There can be little doubt that the genotype exercises
considerable influence on smoking, and on the particu-
lar habit of smoking adopted…”

Fisher used this association to suggest that perhaps lung
cancer was not caused by smoking per se but was
caused by that part of the genotype that also caused
people to smoke.  Thus people who are disposed to
smoke would contract lung cancer at the same rate
whether they smoke or not.

Cornfield et al (1959) countered Fisher’s alternate ex-
planation.  They derived a necessary condition for a
confounding factor to explain away an observed asso-
ciation—assuming the association was totally spurious.

7. CORNFIELD’S CONDITION
Cornfield et al deduced the minimum effect size neces-
sary for a potential confounder to explain an observed
association assuming the association is totally spuri-
ous. They wrote (Cornfield et al, 1959, Appendix A),

If an agent, A, with no causal effect upon the risk of a
disease, nevertheless, because of a positive correla-
tion with some other causal agent, B, shows an ap-
parent risk, r, for those exposed to A, relative to those
not so exposed, then the prevalence of B, among
those exposed to A, relative to the prevalence among
those not so exposed, must be greater than r.

Thus, if cigarette smokers have 9 times the risk of
nonsmokers for developing lung cancer, and this is
not because cigarette smoke is a causal agent, but
only because cigarette smokers produce hormone X,
then the proportion of hormone-X-producers among
cigarette smokers must be at least 9 times greater
than that of non-smokers.  If the relative prevalence
of hormone-X-producers is considerably less than
ninefold, then hormone X cannot account for the
magnitude of the apparent effect."

Cornfield's condition can be stated algebraically. P de-
notes a probability, A denotes the apparent cause, C
denotes the common cause and E denotes an observable
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effect.  A single quote following a letter is the comple-
ment of the condition(A' = 1-A).  The vertical bar (|)
denotes “given”.  Thus P(C|A) is the probability of C
given A; P(C|A') is the probability of C given the ab-
sence of A.

If factor A (smoking) had no effect on the likelihood of
an observable effect E (lung cancer), Cornfield et al,
proved that the prevalence of the actual cause (C) must
satisfy: P(C|A)/P(C|A') > P(E|A)/P(E|A').

Figure 1.  Necessary Relationship among Relative
Prevalences to Explain a Totally Spurious Association.
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This necessary prevalence—Cornfield’s condition—
blunted Fisher's argument.  Fisher had noted a 2 to 1
relative prevalence (51% vs. 24%) in smoking behavior
for the two types of twins.  But Cornfield's condition re-
quired that Fisher show the prevalence of his genetic
factor was nine times as great among smokers as among
non-smokers.  Fisher never replied.
[Actually, Fisher's comparison was of the form
P(A|C)/P(A|C') – the relative prevalence of smokers
among bad genes versus good genes -- instead of
P(C|A)/P(C|A') – the relative prevalence of bad genes
among smokers versus non-smokers.

The necessary condition of Cornfield et al is the posi-
tive side of Simpson's Paradox.  It allowed statisticians
to conclude that, to the best of their knowledge, smo k-
ing caused cancer – based on observational studies.

Cornfield's minimum effect size is as important to ob-
servational studies as is the use of randomized assign-
ment to experimental studies.  No longer could one re-
fute an ostensive causal association by simply asserting
that some new factor (such as a genetic factor) might be
the true cause.  Now one had to argue that the relative
prevalence of this potentially confounding factor was
greater than the relative risk for the ostensive cause.
The higher the relative risk in the observed association,
the stronger the argument in favor of direct causation,
and the more the burden of proof was shifted onto those
arguing against causation.  While there might be many
confounding factors, only those exceeding certain nec-
essary conditions could be relevant.

Rosenbaum (1995) said of Cornfield's condition:
Their statement is an important conceptual ad-
vance.  The advance consists in replacing a gen-
eral qualitative statement that applies in all ob-
servational studies by a quantitative statement
that is specific to what is observed in a particular
study.  Instead of saying that an association be-
tween treatment and outcome does not imply
causation, that hidden biases can explain ob-
served associations, they say that to explain the
association seen in a particular study, one would
need a hidden bias of a particular magnitude.  If
the association is strong, the hidden bias needed
to explain it is large.

8. METHOD OF DIFFERENCES
The minimum effect size can also be a simple difference
of two percentages. Consider three approaches:

7.1   Conditional Probabilities

The influence of a confounding factor can be expressed
using conditional probabilities and Bayes rule:

P(E|A)  = P(E|C) P(C|A)  + P(E|C') P(C'|A)       1a
P(E|A') = P(E|C) P(C|A') + P(E|C') P(C'|A')       1b

P(E|A)-P(E|A') = [P(E|C)-P(E|C')][P(C|A)-P(C|A')]  1c

Since [P(C|A) - P(C|A')] ≤ 1,

[P(E|C) - P(E|C')] ≥ [P(E|A) - P(E|A')]      1d

Cornfield et al derived the risk-difference condition in
(1c) but dismissed it saying it “leads to no useful con-
clusion.”  This paper argues that this risk-difference
condition is extremely useful (see Section 8).

Figure 2.  Necessary Relationship among Absolute Dif-
ferences to Explain a Totally Spurious Association.
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7.2   Regression Coefficients

The influence of a confounding factor can be expressed
as a bias in the expected value of a regression coeffi-
cient (Wonnacott and Wonnacott 1990, p. 420).  In the
case of three variables: A, C and E, the expected change
in the response variable E given a change in A can be
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biased whenever one ignores the influence of a con-
founding factor C.  This bias is the product of two slope
coefficients.

To illustrate, let the uncontrolled coefficient regressing
E on A be b0, the “whole effect”. When regressing E on
A and controlling for C, there are two coefficients, both
involving E.  Let b1 be the coefficient involving A (the
“direct effect”); let b2 be the coefficient involving C.
Let b3 be the coefficient regressing C on A.  The “indi-
rect effect” is the product of b2 and b3.  Wonnacott and
Wonnacott show that the whole effect (b0) is the sum of
the direct effect (b1) and the indirect effect (b2 x b3):

b0 = b1  +  (b2 × b3).      2a

If we fail to include C, the change in the expected value
of E for a one unit change in A will be b0, the whole
effect.  If C is a confounding factor, the change in ex-
pected value of E for a one-unit change in A should be
b1, the direct effect.  This estimated change in E based
on the whole effect will be biased by the amount of b2 ×
b3, the indirect effect.

In relating this regression coefficient approach to Corn-
field’s nullification, we can obtain the same result ob-
tained earlier in (1d).  With no direct effect (b1 = 0), the
direct association is completely spurious and

b0 = b2 × b3.      2b

The difference between the uncontrolled effect (b0) and
the direct effect (b1) can be viewed as bias—an appar-
ent influence due to a failure to take account of the con-
founding factor.

If all the variables are binary, then the regression slope
coefficients are the difference in the associated percent-
ages: b0 = P(E|A) - P(E|A'),

b2 = P(C|A) - P(C|A') and
b3 = P(E|C) - P(E|C').

If b0 = b2 × b3, we obtain (1c).

Since these slopes are differences in probabilities, they
have absolute values no greater than 1.  Thus we can
deduce that b2 ≥ b0, as shown in (1d).

7.3  Partial Correlation Coefficients

The influence of a confounding factor can be expressed
using partial correlation.

   rAE,C = {rAE - [rAC rCE]}/ √[(1-r2
AC) (1-r2

CE)]       3a

If the apparent association between A and E (rAE) is
entirely spurious and is due entirely to associations with
a common cause (C), then the association between A
and E, conditioned on C, is zero (rAE,C = 0).  Thus,

rAE = rAC rCE      3b
It follows that |rAC| and |rCE| must each be at least as
large as |rAE|.  This relationship is well known, “For a

confounding variable to explain an association of a
given strength, it must have a much stronger association
with both the possible causal factor and the disease”
(Friedman 1994, p. 210 and 214).

When the variables involved are binary, the Pearson
correlation coefficient reduces to phi (φ ):

φ (E,C)=[P(E|C)-P(E|C')]√[P(C)P(C')]/[P(E)P(E')]  3c

Under (3b), φ (E,A) = φ (E,C) x φ  (C|A). Thus,

[P(E|A) - P(E|A')] √{[P(A)P(A')]/[P(E)P(E')]}

=  {[P(E|C) - P(E|C')]√{[P(C)P(C')]/[P(E)P(E')]}}
{[P(C|A) - P(C|A')]√{[P(A)P(A')]/[P(C)P(C')]}}  3d
which reduces to (1c).

7.4  Comparison of Approaches

All three “difference” approaches give the same result
as summarized by (1c) and (1d).  The conditional prob-
ability approach is simplest.  The regression approach is
most powerful since it can be generalized to multiple
confounding factors (Wonnacott and Wonnacott 1979,
p. 415).  Although the partial correlation coefficient
approach is more theoretical, it can be shown to meas-
ure the strength of association without knowing the
prevalence of C in A.

9. EXPLANATORY POWER

Equation (1d) gives a very simple method for deter-
mining whether a third variable (C) has the strength –
the effect size – necessary to nullify or reverse an ob-
served association between two other variables (A and
E).  Students need only compare two simple differences
measured in percentage points.  If,

[P(E|C) - P(E|C')] ≥ [P(E|A) - P(E|A')]      1d

then one should be concerned about the possibility of a
Simpson's Paradox reversal.  This simple requirement
establishes a minimum effect size for any confounding
factor to bring about a nullification or a reversal of an
observed association that is completely spurious.

10. TEACHING SIMPSON'S PARADOX
For the past three years students in introductory statis-
tics were taught to use simple differences -- differences
in percentage points -- in comparing the explanatory
powers of two binary variables.  Students were cau-
tioned that the truth of the percentage-point difference
is not sufficient to imply a Simpson’s Paradox rever-
sal—it is only a necessary condition.  Students have
used these ideas as follows.

1. Consider two hospitals: a city hospital and a rural
hospital.  The death rate is 3% of cases at the city hos-
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pital versus 2% at the rural. The combined death rate is
2.7%.  Thus, it seems that the rural hospital is safer than
the city hospital.  See Figure 3.

Figure 3.  Death rates by hospital and patient condition
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Now consider a plausible confounding factor: the con-
dition of the patient’s health.   We find that overall the
death rate among patients in poor condition is 3.8%
while that among patients in good condition is 1.2%.

Here the simple difference in death rates by patient
condition (2.6 percentage points) is greater than the
simple difference in death rates by hospital (1 percent-
age point).  Thus we have strong reason to be con-
cerned about a possible Simpson's Paradox reversal of
the association between hospital and death rate.  To
guard against such a reversal we can take into account
(control for) patient condition when comparing the
death rates for these two hospitals.

2. In a group of convicted murderers, the death pen-
alty was given for 11.9% of white murderers and 10.5%
of black murderers (Agresti 1984).  Based on this data,
one might argue that the legal system is biased against
whites.  However, when the sentences are classified by
the race of the victim, the death penalty was given in
14.0% of the cases with a white victim and 5.4% of the
cases with a black victim.  The difference in the rate of
death sentences by race of victim (8.6 percentage
points) is greater than the difference in rate of death
sentences by race of murderer (1.4 percentage points).
To guard against a Simpson's Paradox reversal we must
take into account the race of the victim when studying
the association between the death penalty and the race
of the mu rderer.  See Figure 4.

Figure 4.  Death sentence rates by race of murder and
race of victim
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3. Cryer and Miller discuss renewal rates of magazine
subscriptions (1991, p. 93).  In one year the overall re-
newal rate was increased between January and Febru-
ary.  Yet the renewal rate in every category went down.
With six kinds of subscriptions, the cause is difficult to
see.  But if we eliminate all types of subscriptions ex-
cept the two largest groups, we find the overall renewal
rate was 53.4%.  The overall rate was 47.9% in January
and 67.1% in February.  The two-month renewal rate
for regular renewal was 78.3% while that for subscrip-
tion agents was 20.6%.  The difference in renewal rates
by type of subscription (67.7 percentage points) is
much greater than the difference in renewal rates by
month (19.5 percentage points).  Thus to understand the
month-to-month difference, we must take into account
the type of subscription.  This example shows that even
a time difference is susceptible to Simpson's Paradox.

Figure 5.  Renewal rates by month and subscription
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11. RESULTS OF TEACHING
Following are some observations of the results of
teaching students about the Cornfield conditions:

1. Students found the algebraic form of Cornfield's
condition to be unintuitive. To better illustrate these
differences, a graphical technique was developed.  The
overall probability of the effect, P(E), was used as the
base line.  The four probabilities being compared were
grouped so that percentage point differences were vis u-
ally evident (See Figures 3, 4 and 5).

2. Students found this graphical device (Figures 3, 4
and 5) to be visually intuitive.  It seems to be a simple
and sensible way to measure the importance -- the ex-
planatory power -- of a confounding factor.

3. Students need extensive reinforcement to see that
associations can be conditional.  They don't see arithm-
etic as conditional, so why should statistics be different.

4. Students seem to understand the problem of asso-
ciation reversal better when describing the association
as “spurious” rather than as “biased”.  The concept of
‘bias’ implies error, whereas the concept of ‘spurious’
better captures the spirit of being true in one sense, but
not in another.  ‘Spurious’ indicates 'real' but lacking in
authenticity.  Knowing an association can be unbiased
(true) but still be spurious gives them a more powerful
way of evaluating an association.   Furthermore,
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knowing an association can be spurious sets the stage
for partial correlation and multivariate regression.

5. Students who are trained in this way seem better
able to appreciate the distinction between total and
partial correlations in multivariate regression.  They
are more concerned about what is taken into account.

12. POSSIBLE OBJECTIONS
Following are some arguments against featuring Simp-
son's Paradox in teaching introductory statistics:

1. Simpson's Paradox is unimportant.  It is omitted
from many introductory texts.  When present, it is
sometimes just a problem or an optional section.  Even
if in the text, teachers often skip it.  Reply:  True, these
are signs of unimportance, but they are not arguments.

2. In observational studies, Simpson's Paradox is
always possible.  There is no known statistical test for
confounding.  Reply:  True but with Cornfields' mini-
mum effect-size conditions we can eliminate many con-
founders and thus strengthen an inductive argument.

3. Simpson's Paradox is seldom encountered in doing
real statistical studies.  Reply:  Yes, but the observa-
tional studies most susceptible to Simpson's Paradox
are often the studies used as evidence for important
changes in public policy (c.f., second hand smoke).

4. There are too many other statistical concepts that
are more fundamental.  Reply:  Fundamentality de-
pends on the goal.  Simpson's Paradox is not funda-
mental if the goal is to reason deductively about statis-
tical inference, but is most fundamental if the goal is to
reason inductively from association to direct causation.

5. Typically, there are multiple confounding factors.
Reply:  True.  This single-factor emphasis should be
used as an introduction to multiple regression.

13. CONCLUSION
If students are to understand proper inductive reasoning
about causality in observational studies, they must un-
derstand Simpson's Paradox.  Understanding the neces-
sary condition (minimum effect size) for a reversal of a
spurious association is the key to proper understanding
of Simpson's Paradox.  Without proper understanding
of the necessary condition, Simpson's Paradox can be a
doorway to subjectivism (i.e., if an argument is not de-
ductively valid, nothing is certain and anything is pos-
sible).  Thus Cornfield’s conditions are a most impor-
tant statistical contribution to human thought.
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Appendix I: Quotes from Cornfield et al (1959).

Measures of Difference:
“…we now discuss the use of relative and absolute
measures of differences in risk.  When an agent has an
apparent effect on several diseases, the ranking of the
diseases by the magnitude of the effect will depend on
whether an absolute or a relative measure is used.  …

Both the absolute and the relative measures serve a
purpose.  The relative measure is helpful in 1) apprais-
ing the possible noncausal nature of an agent having an
apparent effect; 2) appraising the importance of an
agent with respect to other possible agents inducing the
same effect; and 3) properly reflecting the effects of
disease misclassification or further refinement of classi-
fication.  The absolute measure would be important in
appraising the public health significance of an effect
known to be causal.

The first justification for use of the relative meas-
ure can be stated more precisely, as follows:

If an agent, A, with no causal effect upon the risk of a dis-
ease, nevertheless, because of a positive correlation with
some other causal agent, B, shows an apparent risk, r, for
those exposed to A, relative to those not so exposed, then
the prevalence of B, among those exposed to A, relative to
the prevalence among those not so exposed, must be
greater than r.

Thus, if cigarette smokers have 9 times the risk of non-
smokers for developing lung cancer, and this is not be-
cause cigarette smoke is a causal agent, but only be-
cause cigarette smokers produce hormone X, then the
proportion of hormone-X-producers among cigarette
smokers must be at least 9 times greater than that of
non-smokers.  If the relative prevalence of hormone-X-
producers is considerably less than ninefold, then hor-
mone X cannot account for the magnitude of the appar-
ent effect (Appendix A).

The second reason for using a relative measure
may be phrased as follows:

If two uncorrelated agents, A and B, each increase the risk
of a disease, and if the risk of the disease in the absence of
either agent is small (in a sense to be defined), then the ap-
parent relative risk for A, r, is less than the risk for A in the
absence of B.

The presence of other real causes thus reduces the ap-
parent relative risk.  If, for example, the relative risk of
developing either disease I or disease II on exposure to
A is the same in the absence of other causes, and if dis-
ease I, but not disease II, also has agent B present, then
the apparent relative risk of developing disease I on
exposure to A will be less than that for disease II (Ap-
pendix B).

The third reason for using a relative measure is:
If a causal agent A increases the risk for disease I and has
no effect on the risk for disease II, then the relative risk of
developing disease I, alone, is greater than the relative risk
of developing disease I and II combined, while the absolute
measure is unaffected.

Appendix A
We feel obliged to give proof of the rather obvious
statement on the magnitudes of relative risk because it
has been suggested that the use of a relative measure-
ment is merely “instinctive” and lacking in rational
justification.  Let the disease rate for those exposed to
the causal agent B, be r1 and for those not exposed, r2,
each rate being unaffected by exposure or nonexposure
to the noncausal agent, A.   Let r1 > r2.  Of those ex-
posed to A, let the proportion exposed to B be p1, and
of those not exposed to A, let the proportion exposed to
B be p2.  Because of the assumed positive correlation
between A and B, p1 > p2.  Then
      R1 = rate for those exposed to A = p1r1 +(1-p1)r2
      R2 = rate for those not exposed to A = p2r1 +(1-p2)r2

(1) R1/R2  =  {p1r1 +(1-p1)r2} / {p2r1 +(1-p2)r2}

Since p1 > p2 and r1 > r2, it follows that R1/R2 > 1.
From (1) we obtain

p1/p2 = R1/R2 + [r2 /(p2 r1)] [(1-p2)(R1/R2)-(1-p1)]

Since p1 > p2 and R1/R2 > 1, the second term on the
right is positive and p1/p2 > R1/R2.
Since p1/p2 is the ratio of the prevalence of B among
those exposed to A relative to that among those not so
exposed, and R1/R2 is the apparent relative risk, r, the
statement is proved.

On the other hand, if the absolute difference, R1 - R2, is
used, the relationship, (R1 - R2) = (r1 - r2)(p1 - p2), leads
to no useful conclusion about p1 - p2.

Appendix B
The proof again is simple.  Let r11 denote the risk of the
disease in the presence of both A and B, r12, the risk in
the present of A and absence of B, r21, the risk in the
absence of A and presence of B, and r22, the risk in the
absence of both A and B.  It is reasonable to assume r22

= 0, but the less restrictive specification, r22 < r12 r21 /
r11 is sufficient for what follows.  The proportion of the
population exposed to B is denoted by p, and this, by
hypothesis, is the same whether A is present or absent.
Then
    R1 = rate for those exposed to A = pr11 +(1-p)r12

    R2 = rate for those not exposed to A = pr21 +(1-p)r22
and  R1/R2  = apparent relative risk

R1 r12 [1+{[p/(1-p)](r11 / r12)}]

R2 r22 [1+{[p/(1-p)](r21 / r22)}]

Since r22/r21 < r12/r11, the second factor is less than
unity and (R1/R2) < (r12/r22) which proves the proposi-
tion.”

[Editorial comment: In Appendix A, the result follow-
ing (1) is obtained by multiplying (1) by the right-hand
denominator, dividing by p2r1, and canceling r1.]
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